关灯
护眼
字体:

恶魔岛幻想_[日]岛田庄司【完结】(42)

  在地面上拖着这样的大翅膀每一天都会举步维艰,那它为什么还能过上食肉生活呢?它有着如此漫长的进化时间,可是为什么束缚了身体活动的大翅膀这一对无用的累赘却不曾发生退化呢?

  恶魔岛幻想曲第三章恶魔岛5太阳系的各个行星,如果剔除离太阳最近的水星、第二近的金星以及最远的冥王星这三颗行星,它们在自转速度方面都有着某种程度的统一性。

  拿地球和火星来说,火星上的一天基本上相当地球上的一天。就是说,地球上过了一天,火星也就自转了一圈。说得精确点,地球自转一圈所需要的时间是二十三点九三个小时,而火星则为一点零二六天,非常接近。我们不清楚两颗行星的这一共性是刻意安排的结果,还是纯属偶然。

  位于火星外侧的木星虽然体积是地球的一千倍,可自转速度却快得多,它的一天,即自转一圈所需的时间为九点八个小时。因此,木星的赤道部分便由于离心力的作用而膨胀。这也是因为这颗行星至少外廓部分是由气体构成的。木星外侧的土星,自转周期是十点二个小时,在这两颗行星上,一天的时间都不及地球的一半。

  更外侧的天王星自转一圈需要十七点九个小时,而再远一些的海王星自转一圈的时间为十九点一个小时,无论它们的哪一个,一天的时间都要短于地球上的一天。也就是说,自转的速度比地球要来得快。

  木星和土星这一组,它们的一天大致相当于十小时。而天王星和海王星这一组,一天则不到二十小时。这两组的自转速度都快于地球。就像恶魔岛幻想曲第三章恶魔岛地球和火星那样,行星们两两相配,结成一对儿。

  这里面是有着某种意义呢,还是仅仅出于偶然,谁也说不清。

  我们再回过头来看看刚才被剔除在外的那三颗行星。还是先拿数字说话。水星自转一圈需要五十八点六天,耗时近两个月;金星则需要两百四十三天,约等于八个月。就是说,它们两个的自转速度都很慢。而金星更是慢得出奇,几乎让人感觉不出它在自转。而且,金星的自转方向与其他的八个行星都是相反的。

  冥王星自转一圈耗时六点四天,花了将近一个星期。这几颗行星的自转速度千差万别,它们彼此间结不成同盟。

  不过,本人并不赞成将冥王星算作太阳系里的一员。虽然行星并不是一定要沿着一个完美的圆形轨道围着太阳旋转,可这个冥王星的轨道却瘪得实在不成样子。这个离太阳最远的星球,它的轨道与比它更接近太阳一个“身位”的海王星的轨道相交叉,定期地比海王星更加深入到太阳系的内侧。

  这一特征是其他的行星所不具备的,再加上这颗行星的尺寸要小了几号,我们也可以把它看作是包括哈雷彗星在内的众多具有椭圆形轨道的卫星中,轨道碰巧接近圆形的大型的小行星。

  近些年来,人们开始注意到在冥王星的周围有不少这种体积级别的小行星,倘若假以时日,在这些小行星逐一得到确认后,围绕在冥王星周围的也是一片酷似火星和木星之间的环状小行星群这一事实将会逐渐地浮出水面。因此,我们似可不必将冥王星与其他的八颗行星相提并论。

  恶魔岛幻想曲第三章恶魔岛关于这八大行星,我们先来看看他们的大小。

  在体积上拔得头筹的当属木星和土星这一对儿。

  拿赤道半径来说,木星约为七万公里,土星则是六万公里。

  直径约等于它们三分之一的中等级别的行星是天王星和海王星,天王星的赤道半径是两万五千四百公里,海王星则为两万四千三百公里。

  个头相当于它俩四分之一的也有两颗,这就是我们地球和自转形态与众不同的金星。这一对儿的赤道半径均略低于六千公里。从个头上说,地球和金星是一对哥俩,而不是和火星。

  比这哥俩还要小的就是火星了,它的赤道半径为三千三百公里。而水星还要小一些,赤道半径有两千四百公里。冥王星则更小,成了最小的太阳系成员。

  金星不仅自转速度缓慢,自转的方向还与其他的行星相反。假如这种逆向自转是和大的行星相撞后的产物的话,那么,它那长达八个月之久的奇慢无比的自转就可以理解了。想必是与之相撞的其他天体使金星的自转停了下来,继而使其自转方向发生了颠倒,但是旋转的速度低得可怜,始终跟原先的自转速度不在一个档次。既然这种旋转肇始于撞击,旋转的势头自然是大不到哪儿去的。

  除了金星的逆向自转以外,行星们的旋转速度也都各不相同。这是一个很大的谜,而迄今为止,天文学家们还没有谁能够给出令人信服的猜想。各个行星的旋转速度快慢不一,毫无规则可言,这并非是一种正常的现象。考虑到太阳系的诞生和形成的过程,各个行星大可以朝着同一个恶魔岛幻想曲第三章恶魔岛方向、按照大致相同的速度旋转。

  各个行星在经历过属于旋转的尘埃和气体的聚合体的时期,逐渐冷却、凝固下来后,它们的旋转速度就会由于种种的原因而拉开差距。这一点很容易理解。

  总体而言,旋转体都是要遵循“角动量守恒定律”的。太阳本身也在自转,被吸引到它周围的尘埃和气体的聚合体也同样是自转得不亦乐乎,同时,它们也开始围着太阳进行公转。这就是太阳系的诞生,公转的尘埃和气体所形成的旋转体便是行星的坯胎,它逐渐凝固,向中心点不断地收缩形成比原先的体积小得多的球体,尔后倾向于以更快的速度进行自转。

  关于“角动量守恒定律”有一个易于理解的例子:溜冰运动员在冰面上翩翩旋转,双臂展开时速度悠然,而一旦身体蜷缩起来,旋转的速度就会加快。这一现象便是“角动量守恒定律”的写照。

  按照这个定律,体积越小的行星,自转的速度就越快。当然,由于行星汇聚的物质千差万别,并不是非要一成不变地恪守这个定律不可,允许有例外,但是要有说得过去的理由。再者说,只要总体的趋势与这个定律大致吻合,我们也就无须多加解释。也就是说,抛开冥王星不谈,水星的自转速度最快,火星次之,金星和地球这一组位居其后,再往后是海王星和天王星这一对儿,木星和土星组合可以是最慢的。

  然而事实却恰恰相反,个头最大的木星和土星,自转的速度最快。天王星和海王星这第二大的组合拥有第二快的自转速度。“角动量守恒定恶魔岛幻想曲第三章恶魔岛律”在现实中遭到了颠覆。

  木星的大部分都是氢气和氦气的聚合体,时至今日没有人能够知道,在常年引发风暴的炽热的云层之下,它的地表是一番怎样的景象。我们可以想象出那上面几乎没有坚硬的地面,这就等于是说,它的准确赤道半径仍然是个未知数,同时也意味着,“角动量守恒定律”无法在这个地方适用。虽然这颗行星的引力极强,但是地核部分的大小可能还赶不上天王星。关于这一点,我们只能寄望于未来的研究成果。

  总而言之,有一个方法最容易阐释为什么我们太阳系的各大行星的运动表现得与“角动量守恒定律”相悖,那就是将其归结于其他天体的撞击所带来的干扰。宇宙是动态变化的,可宇宙里面除了星星这种物质以外,就是无穷无尽的空间,此外再无他物。至少我们凭借当今的科学手段所能观察到的宇宙里的角色就是它们了。在这里,光的速度是恒定的,可以作为标尺,时间也是空间的一个侧面,它们无一例外地都要受到重力的影响。这就是二十世纪三十年代为止,身为万物灵长的地球上的最高级智慧生物所达到的对于宇宙的理解。


小贴士:如果觉得52书库不错,记得收藏网址 https://www.52shuku.vip/ 或推荐给朋友哦~拜托啦 (>.<)
传送门:排行榜单 | 好书推荐 | 岛田庄司